PHYSICAL REVIEW E 81, 036212 (2010)

Transitions in eigenvalue and wavefunction structure in (1+2)-body random matrix ensembles

with spin

Manan Vyas,l V. K. B. Kota,l’2’* and N. D. Chavda®
lPhysical Research Laboratory, Ahmedabad 380 009, India
2Department of Physics, Laurentian University, Sudbury, Ontario, Canada P3E 2C6

3Applied Physics Department, Faculty of Technology and Engineering, M.S. University of Baroda, Vadodara 390 001, India

(Received 29 September 2009; revised manuscript received 15 December 2009; published 12 March 2010)

Finite interacting Fermi systems with a mean-field and a chaos generating two-body interaction are modeled
by one plus two-body embedded Gaussian orthogonal ensemble of random matrices with spin degree of
freedom [called EGOE(1+2)-s]. Numerical calculations are used to demonstrate that, as \, the strength of the
interaction (measured in the units of the average spacing of the single-particle levels defining the mean-field),
increases, generically there is Poisson to GOE transition in level fluctuations, Breit-Wigner to Gaussian tran-
sition in strength functions (also called local density of states) and also a duality region where information
entropy will be the same in both the mean-field and interaction defined basis. Spin dependence of the transition
points A, Ng, and A\, respectively, is described using the propagator for the spectral variances and the formula
for the propagator is derived. We further establish that the duality region corresponds to a region of thermal-
ization. For this purpose we compared the single-particle entropy defined by the occupancies of the single-
particle orbitals with thermodynamic entropy and information entropy for various A\ values and they are very

close to each other at A=\,.
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I. INTRODUCTION

Finite quantum systems such as nuclei, atoms, quantum
dots, and small metallic grains share one common property:
their constituents interact via two-particle interactions. How-
ever, the classical Gaussian orthogonal ensemble (GOE) of
random matrices (similarly the unitary ensemble GUE or the
symplectic ensemble GSE) is an ensemble of multibody not
two-body interactions; GOE representation of the Hamil-
tonian (H) for a m particle system implies m-body forces.
Therefore, a better random matrix hypotheses for finite quan-
tum systems is to consider the effective interactions to be
random. Matrix ensembles generated by random two-body
interactions, called two-body ensembles, model what one
may call many-body chaos or stochasticity exhibited by
these systems. These ensembles are defined by representing
the two-particle Hamiltonian by one of the classical en-
sembles (GOE or GUE or GSE) and then the m >2 particle
H matrix is generated by the m particle Hilbert-space geom-
etry [1,2]. The key element here is the recognition that there
is a Lie algebra that transports the information in the two-
particle spaces to many-particle spaces [2,3]. Thus the ran-
dom matrix ensemble in the two particle spaces is embedded
in the m particle H matrix and therefore these ensembles are
more generically called embedded ensembles (EEs) [2,4].
Random two-body interactions were introduced first in
nuclear physics in 1970-1971 [1]. Nuclear shell-model cal-
culations showed differences between these ensembles and
GOE both in one-point (density of states) and two-point
(fluctuations) functions [2,4,5]. Simplest of these ensembles
is the embedded Gaussian orthogonal ensemble generated by
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two-body interactions for spinless fermion systems [called
EGOE(2)] [2]. The GUE and GSE versions as well as the
ensembles for boson systems are not considered in this pa-
per. Note that just as the EGOE(2) ensemble, it is possible to
define k-body (k<<m) ensembles EGOE(k). Some of the ge-
neric results, derived numerically and analytically, for
EGOE(k) are as follows: (i) state densities approach Gauss-
ian form for large m and they exhibit, as m increases from k,
semicircle to Gaussian transition with m=2k being the tran-
sition point [4,6]; (ii) fluctuations follow GOE (as far as one
can infer from numerical examples) [4]; (iii) there is average
fluctuation separation with increasing m and the averages are
determined by a few long-wavelength modes in the normal-
mode decomposition of the density of states [2,4,7]; (iv)
smoothed (ensemble averaged) transition strength densities
take bivariate Gaussian form and as a consequence transition
strength sums originating from a given eigenstate will be
close to a ratio of two Gaussians [8]; and (v) cross correla-
tions between spectra with different particle numbers will be
nonzero [9,10]. For reviews on EGOE see [4,11,12]. Besides
the two-body interaction, Hamiltonians for realistic systems
also contain a mean-field one-body part (generating shell
structure) and therefore a more appropriate random matrix
ensemble for finite quantum systems is EGOE(1+2), the em-
bedded GOE of one plus two-body interactions [ 12—14]. This
ensemble contains a parameter A, the strength of the interac-
tion measured in the units of the average spacing of the
single-particle (sp) states. As the value of \ increases from
zero, level fluctuations exhibit transition from Poisson to
GOE at N\=\, [15]. With further increase in the \ value,
strength functions (also called local density of states) make a
transition from Breit-Wigner (BW) to Gaussian form at A\
=Ap>\. [16-18]. Beyond this point, there is a region
around A=\, where some statistics become same in the
eigenbasis of the mean-field Hamiltonian and the pure two-
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body Hamiltonian [19,20] (though not yet proved, this result
perhaps extends to any basis [21]). Equivalently, all different
definitions for thermodynamic properties such as entropy and
temperature coincide at A=\, Besides these, generic prop-
erties of EGOE(2) are valid for EGOE(1+2) in the strong-
coupling limit, i.e., for N> \. For a detailed discussion of
the three chaos markers (A.,Ap,\,) generated by EGOE(1]
+2) and also for applications of the ensemble see [12,21-23]
and references therein.

Eigenstates of realistic systems carry, besides the particle
number, additional quantum numbers. For example, the spin
(S) quantum number is important for quantum dots and me-
tallic grains. Similarly for atomic nuclei, important are the
orbital angular momentum (L), spin (S) and isospin (7), i.e.,
LST or the total angular momentum J (J=L+5) and isospin,
i.e., JT or in some situations just J [5,24]. As group symme-
tries define various quantum numbers, in general one has to
consider EE with group symmetries [10,25]. Numerical as
well analytical study of these more general ensembles is
challenging due to the complexities of group theory and also
due to large matrix dimensions for m=10. The first non-
trivial but at the same time important (from the point of view
of its applications) embedded ensembles are EE(2)-s and
EE(1+2)-s with spin degree of freedom, for a system of
interacting fermions. In the last decade, the GOE version, the
embedded Gaussian orthogonal ensemble of one plus two-
body interactions with spin degree of freedom [EGOE(]
+2)-s], has received considerable attention. Both numerical
[26,27] and analytical [25,28,29] methods for analyzing and
applying this ensemble have been developed. Using these,
several results are obtained and briefly they are as follows:
(i) fixed-(m,S) density of levels is established, using numeri-
cal results, to be Gaussian [26,28,30]; (ii) lower order cross
correlations in spectra with different (m,S) are studied both
numerically and analytically and they are found to be larger
compared to those for the spinless fermion systems [10,26];
(iii) ground-state spin structure investigated using second
and fourth moments established that with random interac-
tions there is preponderance of §=0 ground states [25,28];
(iv) delay in Stoner instability in itinerant magnetic systems
due to random interactions has been established and thus
with random interactions much stronger exchange interaction
is needed for ground-state magnetization in irregular quan-
tum dots [30]; (v) it is shown that the odd-even staggering in
the ground-state energies of nm-scale metallic grains, attrib-
uted normally due to mean-field orbital energy effects or
coherent pairing effects, can also come from purely random
two-body Hamiltonians [25,31]; (vi) expectation values of
the pairing Hamiltonian in the eigenstates generated by ran-
dom interactions showed that random interactions, even in
the chaotic domain, exhibit strong pairing correlations in the
ground-state region and they decrease as we go up in energy
[29]; and (vii) random interactions with pairing and ex-
change interactions are shown to generate bimodal form for
conductance peak spacing distributions in small metallic
grains consistent with the results from microscopic calcula-
tions [29,32]. Thus, although the ground-state structures gen-
erated by EGOE(1+2)-s and also some results in the strong-
coupling region have been investigated in some detail, the
important question of chaos or transition markers generated
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by the ensemble hasn’t yet been investigated in any detail. It
should be stressed that the chaos markers form the basis [21]
for statistical spectroscopy [12,33-36] and also the BW to
Gaussian transition plays an important role in characterizing
multipartite entanglement and fidelity decay relevant for
quantum information science (QIS) [23,37,38]. Our purpose
in this paper is to establish that the EGOE(1+2)-s ensemble
exhibits three chaos markers just as the EGOE(1+2) for
spinless fermion systems and more importantly, by deriving
the exact formula for the propagator of the spectral vari-
ances, the spin dependence of the markers is explained.
These results, derived for the first time using an ensemble
with additional symmetry (besides particle number), provide
much stronger basis for statistical (nuclear and atomic) spec-
troscopy. In addition, as recognized only recently, entangle-
ment and strength functions essentially capture the same in-
formation about eigenvector structure and therefore the
change in the form (&-function to BW to Gaussian) of the
strength functions in different regimes defined by the chaos
markers determines entanglement properties in multiqubit
systems [23,37-39]. Similarly, the chaos marker \, discussed
ahead allows us to define a region of thermalization in finite
interacting quantum systems modeled by EGOE and ther-
malization in generic isolated quantum systems has applica-
tions in QIS as emphasized in some recent papers [40-43].
Now we will give a preview.

In Sec. II, for completeness, some general aspects of
EGOE(1+2)-s are discussed. In Sec. III analytical formula
for the ensemble averaged spectral variance of fixed-(m,S)
eigenvalue densities is given and this plays a vital role in
explaining the results presented in the remaining part of the
paper. Some results for the excess parameter are discussed in
Appendix A. Section IV gives the results for Poisson (in our
calculations it is strictly not a Poisson) to GOE transition in
level fluctuations. Section V gives the results for BW to
Gaussian transition in strength functions. Section VI deals
with the duality marker using information entropy. In Sec.
VII, occupancies of sp orbitals and the corresponding sp en-
tropy are considered and it is established that the duality
region corresponds to a region of thermalization for the finite
quantum system considered. Finally Sec. VIII gives some
concluding remarks.

II. EGOE(1+2)-s ENSEMBLE: PRELIMINARIES

Let us begin with a system of m (m>2) fermions distrib-
uted say in ) number of sp orbitals each with spin s=% so
that the number of sp states N=2(). The sp states are denoted
by |i,m=* %) with i=1,2,...,Q and similarly the two par-
ticle antisymmetric states are denoted by |(if)s,m,), with s
=0 or 1. For one plus two-body Hamiltonians preserving m

particle spin S, the one-body Hamiltonian is /(1)
=2 12...o€n; Here the orbitals i are doubly degenerate, n;
are number operators and € are sp energies [it is in
principle possible to consider h(1) with off-diagonal energies
€;]. Similarly the two-body Hamiltonian V(2) s
defined by the two-body matrix elements AV3y
= ((k)s,my|V(2)|(ij)s.m,), with the two-particle spins s=0
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and 1. These matrix elements are independent of the mi
quantum number. Note that the A\, are constants and for s
=1, only i#j and k#[ matrix elements exist. Thus \>(2)
=)\0\75:0(2)+)\,\75:1(2) and the V matrix in two particle
spaces is a direct sum matrix with the s=0 and s=1 space
matrices having dimensions Q(Q+1)/2 and Q(Q-1)/2, re-
spectively. Now, EGOE(2)-s for a given (m,S) system is
generated by defining the two parts of the two-body Hamil-
tonian to be independent GOE’s [one for \A/S:O(Z) and other
for Vszl(Z)] in 2-particle spaces and then propagating the
V(2) ensemble {V(Z)}:)\O{\A/SZO(Z)}+)\]{XA/’:'(2)} to the
m-particle spaces with a given spin S by using the geometry
(direct product structure), defined by U(2Q)DU(Q)
®8U(2) algebra, of the m-particle spaces; here {} denotes
ensemble. Then EGOE(1+2)-s is defined by the operator

{HYecorsas = h(1) + No{ "2} + A {V=12)), (1)

where {V*=°(2)} and {V*=!(2)} in two particle spaces are
GOE(1) and N\, and A\, are the strengths of the s=0 and s
=1 parts of V(2), respectively. Note that GOE(v?) means
GOE with variance v? for the off-diagonal matrix elements
and 2v? for the diagonal matrix elements. From now on-
wards we drop the “hat” symbol over H, h and V operators
when there is no confusion.

The mean-field one-body Hamiltonian /(1) in Eq. (1) is a
fixed one-body operator defined by the sp energies ¢ with
average spacing A (it is possible to draw the €’s from the
eigenvalues of a random ensemble [30] or from the center of
a GOE [44]). Without loss of generality we put A=1 so that
No and \; are in the units of A. Thus, EGOE(1+2)-s in Eq.
(1) is defined by the five parameters ({,m,S,\g,\;). The
action of the Hamiltonian operator defined by Eq. (1) on an
appropriately chosen fixed-(m,S) basis states generates the
EGOE(1+2)-s ensemble in (m,S) spaces. The H matrix di-
mension d(m,S) for a given (m,S), i.e., number of levels in
the (m,S) space [with each of them being (25+1)-fold de-

generate], is
Q+1 Q+1
b (2)
mi2+S+1/)\m/2-S

dm.) = (28 + 1)(

Q+1)

satisfying the sum rule Zg4(25+ 1)d(m,S)=(,’Z). For example
for =m=38, the dimensions are 1764, 2352, 720, 63, and 1
for §=0, 1, 2, 3, and 4, respectively. Similarly for Q=m
=10, the dimensions are 19 404, 29 700, 12 375, 1925, 99,
and 1 for §=0-5 and for Q=m=12, they are 22 6512,
38 2239, 19 6625, 44 044, 4214, 143, and 1 for S=0-6. It is
useful to note that for the EGOE(1+2)-s ensemble three
group structures are relevant and they are U(Q)Q®SU(2),
ES:O,IO(NZ,S)GB and Eso(Nm’S)@, m>2. Here ngs
=d(m,S), the symbol @ stands for direct sum and O(r) is the
orthogonal group in r dimensions. The U(Q) ® SU(2) alge-
bra defines the embedding. The EGOE(2) ensemble has or-
thogonal invariance with respect to the Z¢_, ;O(N, 5)® group
acting in two particle spaces. However it is not invariant
under the ZgO(N,, )@ group for m>2. This group is appro-
priate if GOE representation for fixed-(m,S) H matrices is
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employed; i.e., there is an independent GOE for each (m,S)
subspace.

Given the sp energies € and the two-body matrix ele-
ments V3, the many particle Hamiltonian matrix for a given
(m,S) can be constructed either using the Mg representation
and a spin () projection operator [26] or directly in a good
S basis using angular-momentum algebra [27]. The former is
equivalent to employing the algebra U(2Q)) D U(Q) & U(Q))
and the latter corresponds to U(2Q) D U(Q) ® SU(2). Just as
in our earlier papers [26,29], we have employed the M rep-

resentation for constructing the H matrices and the 52 opera-
tor for projecting states with good S. Then the dimension of
the basis space is D(M¢™)=3d(m,S); M¢"=0 for m even
and 1/2 for m odd. For example, for d=m=8 we have
D(MY™)=4900, for Q=8, m=6, D(M§™)=3136 and for
Q=m=10 we have D(M§")=63 404. It is important to note
that here the construction of the m particle H matrix reduces
to the problem of EGOE(1+2) for spinless fermion systems
and hence Egs. (1)-(3) of [12] will apply. From the dimen-
sions given above, it is clear that numerical calculations will
be prohibitive for m=10 even on best available computers.
Therefore, most of the numerical investigations are restricted
to m = 8. For properties related to a few lowest eigenvalues it
is possible to go beyond m=8 [31]. Now, before presenting
the results for the three chaos markers generated by
EGOE(1+2)-s, we will consider the ensemble averaged
fixed-(m,S) density of levels and present the exact formula
for its variance.

III. GAUSSIAN LEVEL DENSITIES AND ENSEMBLE
AVERAGED SPECTRAL VARIANCES

A. Gaussian form for fixed-(m,S) eigenvalue densities

Using the method discussed in Sec. II, we have numeri-
cally constructed the H matrix in large number of examples
and by diagonalizing them obtained the ensemble averaged
eigenvalue (level) densities p"5(E)=(S(H—-E))™S. Note that
the trace of an operator O over a fixed-(m,S) space is de-
fined by ((O))"5=(25+1)7'S (m,S,a|O|m,S,a) and simi-
larly (m,S) space average is (Oy"S=[(28
+1)d(m,S)]'2 (m,S,a|Olm,S, a). From now onwards, we
drop the ‘bar’ over p when there is no confusion. Results are
shown for =8 and m=6 with S=0 and 1 and Ay=\;=\
=0.3 in Fig. 1. In these calculations and also for all other
calculations reported in this paper we have chosen the sp
energies to be €=i+1/i with i=1,2,...,0) just as in many
of the earlier papers [13,20,26,29]. Note that the second term
(1/i) in € has been added, as discussed first in [13], to avoid
the degeneracy of many-particle states. To construct the ei-
genvalue density, we first make the centroids E.(m,S) of all
the members of the ensemble to be zero and variance
0*(m,S) to be unity i.e., for each member we change the

eigenvalues E to the standardized variables E:[E
—E.(m,S)]/o(m,S). Note that the parameters E.(m,S) and
o*(m,S) depend also on (). But for convenience, we will
drop Q in E.(m,S) and o(m,S) throughout this paper. Then,
using a bin size AE=0.2, histograms for p”5(E) are gener-
ated. The calculated results are compared with both the
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EGOE(1+2)-s
Q=8, m =6, L,=\=A=0.3
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FIG. 1. Ensemble averaged eigenvalue density for a 20 member
EGOE(1+2)-s ensemble with (=8, m=6 and spins S=0 and 1.
The dashed curves give Gaussian representation and the continuous
curves give Edgeworth corrected Gaussians [pgp in Eq. (3)]. Values
of the skewness and excess parameters are also given in the figure.
In the plots, the densities for a given spin are normalized to the
dimension d(m,S). Note that the E.m,S) and o(m,S) are
fixed-(m,S) energy centroids and spectral widths, respectively, of
the eigenvalue densities. See text for further details.

Gaussian (pg) and Edgeworth (ED) corrected Gaussian (pgp)

[45],
1 E?
pg(E) = EGXP( 5 )

pED(E) = PQ(E){ 1+ [%H%(E)}

L 4He4(E) + %Hee(E)} } 3)

Here 7, is the skewness and 7, is the excess parameter.
Similarly, He are the Hermite polynomials: He;(x)=x-3x,
Hey(x)=x*-6x>+3 and Heq(x)=x—15x*+45x>~15. From
the results in Fig. 1, it is seen that the agreement between the
exact and ED corrected Gaussians is excellent. Further nu-
merical examples are given in [26,30] up to m=38. It has been
well established that the ensemble averaged eigenvalue den-
sity takes Gaussian form in the case of spinless fermion as
well as boson systems [2,6,12,46]. Combining these with the
numerical results for the fixed-(m, S) level densities, it can be
concluded that the Gaussian form is generic for the embed-
ded ensembles extending to those with good quantum num-
bers. This is further substantiated by the analytical results for
the ensemble averaged y,(m,S) as discussed in Appendix A.
We will present the analytical formula for the ensemble av-
eraged spectral variances o2(m,S), i.e., for the variance of
p™5(E) in Sec. III B.

It is important to point out that the variances o2(m,S)
propagate in a simple manner [47,48] from the correspond-
ing three defining space variances, the variance in one-
particle space 02(1,%) and the two two-particle variances
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02(2,s)=)\?[d(2,s)+1], s=0,1. Thus the (m,S) space vari-
ances are a linear combination of these three basic variances
with the multiplying factors being simple functions of
(Q,m,S). These functions are called variance propagators as
they carry the variance information from the defining space
to the final (m,S) spaces and it is easy to derive formulas for
them as given in Sec. III B. For example, the variances gen-
erated by the two-body part of the Hamiltonian for Nj=\}
=\? are of the form o‘%,(2)(m,S)=)\2P(Q,m,S). The variance
propagator P(Q),m,S), given by Eq. (13) ahead, determines
much of the behavior of the transitions in eigenvalue and
wavefunction structure as discussed ahead.

B. Propagation formulas for ensemble averaged spectral
variances

Let us start with the fixed-(m,S) energy centroids
E.(m,S)=(H)™S for a one plus two-body Hamiltonian H
=h(1)+V(2)=h(1)+[NoV*=°(2)+\,V*=!(2)]. The operator
generating (H)™S will be a polynomial, in the scalar opera-
tors /i and 82, of maximum body rank 2. A two-body operator
is said to be of body rank 2, a three-body operator of body
rank 3 and so on [2]. Note that 71 is a one-body operator and

§2 is a one plus two-body operator. Hence only 7, /4% and s2
are operators of maximum body rank 2 (for example, the

operator 4AS? is of maximum body rank 3). Then, E.(m,S)
=ag+a,m+a,m>+a;S(S+1). Solving for the a,’s in terms of
E, for m=2, we obtain the well-known propagation formula
for the energy centroids [47],

) P%(m.S)
: 1,172 5=0 20_———
Eem$) = (D) ZIm -+ \QV= @)1 e
w1yt P1mS)
+ )\1<<V 1(2)»2 149(9_ 1)’

Po(m,S) =[m(m+2)-4S(S+ 1],

PY(m,S) =[3m(m—-2) +4S(S + 1)],

<h(1 >1 172 _

12 Gl’

(2@0=S vl o =S vl @)

i=j i<j

Trivially the ensemble average of E,. from the V(2) part will
be zero. However the covariances in the energy centroids
generated by the two-body part H(2)=V(2) of H are nonzero,

2
m, m' ) 0
(HQ)y"SH@)y""' 169(0 )P‘(mS)P (m',S")
2
WP (m,S)P'(m’,S").

(5)

The spectral variances o(m,S)=(H*)"S—[(H)"S]* are
generated by an operator that is a polynomial, in the scalar
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operators 7 and §2, of maximum body rank 4. This gives
HWS)EmmMQﬂ@m@GHH%W&MP The
nine parameters (a,,b,,c) can be written in terms of ¢ and
the two-body matrix elements V7, 01 using the embedding
algebra U(N)D U(Q)) @ SU(2). The final result is given by
Eq. (8) of [26] (this is derived using the results in [49]). We
have carried out the ensemble average of a',zi(m,S) over
EGOE(1+2)-s ensemble assuming that 4(1) is fixed and the
final result is as follows. First the ensemble averaged vari-
ance is

Oé(mvs) = o-i(])(mﬂg) + 0%/(2)(1’”,5‘) (6)
The propagation formula for oi( 1) is simple,

(2 +2)m( —m/2) - 2Q08(S + ])02 ( )
Q-1)Q+1) "

Ty (m,S) =

(7)

The two parts V*=°(2) and V*='(2) of V(2) will have a scalar
part, an effective one-body part and an irreducible two-body
part denoted by V*¥(2), with »=0, 1, and 2, respectively,
with respect to U(N)DU(Q) ® SU(2) algebra. The two v
=0 parts generate the centroids and they can be identified
from Eq. (4). As the v decomposition is an orthogonal de-
composition, we have

FoymS)= 2 N X (VP (8)
s=0,1 v=1,2
As seen from Eq. (8) of [26], for evaluating ([V**=!(2)]*)"$
we need 2; ;\; J(s) where the \(s)’s are the so-called induced
one-particle matrix elements generated by V*,

Nii(s) = E V(L + 6;) = ) - ('Y Vi1 + ),
Kl

Nij(s) = % V(L + 8)(1+ 8 Vi for i#j. (9)

Similarly for evaluating ([V*"=2(2)]*)™5, we need
([v*=2(2)]?)**. First, applying the fact that the V* matrix
elements are independent Gaussian random variables with
zero center and variance unity (except for the diagonal ma-
trix elements it is 2) and simplifying using Eq. (9), we obtain

20 =(Q-1D)(Q+2)?,

ij
2D =(Q-D(Q-2)(Q+2). (10)
ij

Also, {([V*(2)])**=[d(2,5)+1]. This_along with Eq. (8) of
[26] and Egs. (4) and (10) will give ({V*=2(2)]*)>*,

-1)(Q+2),
— (Q-3)(Q*+Q+2)
VL2 () YT = . 11
vV=op oo (1)
Substituting the results in Egs. (4), (8), (10), and (11) in Eq.
(8) of [26] gives the final result,
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0'({2}:m,s)

—_ ¥ Q+2
0‘%,(2)(111,5) = 0 |:

QQ+1)2Q+1
QO*+30+2
0% +30

A {Q+2
QQ-1)21Q

+Q+2

+—
0%+

QZ({Z}:m,S)}

+ 0'({1%:m,S)
0*({1%:m S)];
0'{2}:m,S) =[(Q + 1) P>m,S)/16][m*(m + 2)/2 + (%],

Q*({2}:m,S) = [QUQ + 3) PO(m,8)/32][m*(m" + 1) = (SH)],

R O VI
0'({1%}:m,S) o= mMHDPWSWW$
+8Q(m—1)(Q -2m+4)(sH],
0*({17}:m,S) = (B -7Q+6)((5))*

8(Q-2)
+3m(m = 2)m* (m* - 1)(Q +1)(Q +2)/4
+{SH= mm* (50 -3)(Q +2)
+QQ-1D)(Q+1)(Q+6)}],

P2(m.S) = 3m™(m — 2)/2 — (S2), mu(a-%). (12)

Note that the v=1 terms (they correspond to the Q'’s) are
1/Q? times smaller as compared to the v=2 terms (they
correspond to the Q?’s). Therefore in the dilute limit defined
by Q—, m—o, m/Q—0 and m> S, the V*=%1""=2 parts
determine the variances o‘,zj,(m,S). As a result, formula for the
ensemble averaged variances given in [25] is same as the
sum of the two v=2 terms in Eq. (12).

In most of the numerical examples discussed in the re-
maining part of the paper (except in Appendix B) we employ
No=A;=\ and for this o'%/(z)(m,S) takes the form

No=A1=A
yoy(m.S) — NP(Q.m,S);

1 {Q+2

QOQ+1)21Q

O+ 3Q+ 2
0%+

P(Q,m,S) = 0'({2}:m.,S)

Q*({2k:m S)}
1 {Q+2
Ta0-n2|lo+1

O*+Q+2
+—
0%+

0'{1%}:m.,S)

0*({1%h:m S)] (13)

Note that we are showing () explicitly in the formula for the
variance propagator P({),m,S) as () plays an important role
in determining the transition markers. Figure 2 shows a plot
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FIG. 2. (Color online) Variance propagator P(),m,S) vs S for
different values of ) and m. Equation (13) gives the formula for
P(Q,m,S).

of P(Q2,m,S)/P(2,m,0) vs S for various values of m and ().
As seen from Fig. 2, P({),m,S) decreases with spin and this
plays an important role in understanding the properties of
EGOE(1+2)-s as will be seen in the following Sections. As
an aside let us point out that Egs. (5) and (12) give for
EGOE(2)-s, the exact formula for the normalized cross cor-
relations 3, in the energy centroids with different (m,S)
values where

m,S m',S’
2(m,Sim’,S") = ﬂ% ;
[(H2Q2)y™S(H2(2)y 5 ]2

It is important to mention here that the mathematical
treatment of the embedded Gaussian unitary ensemble of
two-body interactions with spin degree of freedom
[EGUE(2)-s] is comparatively easier than for EGOE(2)-s.
For the EGUE(2)-s ensemble, using U(N) D U(Q) @ SU(2)
Wigner-Racah algebra, exact analytical formulas are derived
for the ensemble averaged spectral variances, cross correla-
tions in energy centroids as defined by Eq. (14) and also for
the cross correlations in spectral variances as given by

Ezz(m,S;m’,S’)
=((HQPY"XHQ)PY" S I[HR) )™
X(HR)PY" 5] -1

[50]. In addition, the ensemble averaged excess parameter
for the fixed-(m,S) density of states is given in terms of
SU(Q) Racah coefficients but general analytical formulas for
these Racah coefficients are not yet available [50]. For the
ensemble averaged variances, comparing Eq. (12) with Eq.
(19) of [50], it is seen that the leading-order terms are the
same for both EGOE(2)-s and EGUE(2)-s. The first-order
correction for EGOE(2)-s is 1/£2? times smaller compared to
the leading term. Similarly, comparing the formulas for 3, it
is seen that to the leading order the EGOE(2)-s result is
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twice that of EGUE(2)-s. Both these results are identical to
the results derived for EGOE(2) and EGUE(2) for spinless
fermion systems [6]. Therefore drawing on the results in [6],
we conjecture that 3,5, for EGOE(2)-s will also be twice that
of EGUE(2)-s to the leading order.

IV. POISSON (OR CLOSE TO POISSON) TO GOE
TRANSITION IN LEVEL FLUCTUATIONS

Fluctuations in the eigenvalues of a fixed-(m, S) spectrum
derive from the two and higher point correlation functions.
For example, the two-point function is

SP:m’S(Ei,Ef) = Pm’S(Ei)Pm’S(Ef) - Pm’S(Ei) Pm’S(Ef)-
(15)

The commonly used Dyson-Mehta Aj; statistic is an exact
two-point measure while variance 0*(0) of the nearest-
neighbor spacing distribution (NNSD) is essentially a two-
point measure [4]. Note that, due to an unfortunate conven-
tion as stated in the footnote 14 of [4], the variance of the
NNSD is ¢2(0), the second nearest ¢>(1) etc. In all the dis-
cussion in this Sec. and all other remaining Secs. V-VIII
(except Appendix B), we use N\og=\;=A, i.e., we employ
EGOE(1+2)-s Hamiltonian,

H, =h(1) + \[V*=0(2) + v*=1(2)]. (16)

The NNSD and Aj; statistics show Poisson character in gen-
eral [51] for very small values of N due to the presence of
many good quantum numbers defined by A(1). As the value
of \ increases, there is delocalization in the Fock space, i.e.,
the eigenstates spread over all the basis states leading to
complete mixing of the basis states. Hence, one expects GOE
behavior for large N values.

For a 20 member EGOE(1+2)-s ensemble with Q=m
=8 and spins S=0, 1, and 2, we have constructed NNSD and
A; for various N\ values changing from 0.01 to 0.3. In the
calculations: (i) the spectrum for each member of the en-
semble is unfolded using ED corrected Gaussian for the ei-
genvalue density so that the average spacing is unity; (ii) we
drop 5% of the levels from the two spectrum ends; (iii) with
this we have constructed the ensemble averaged NNSD his-
tograms and calculated their variances 02(0); (iv) for the A,
statistic, overlap interval of 0.5 (for the unfolded spectrum)
is used and A;(L) for L=60 are calculated following Ref.
[52]; L is the energy interval, measured in units of average
level spacing, over which Aj is calculated. Results for NNSD
and Aj statistic are shown in Figs. 3 and 4, respectively. As
mentioned in Sec. III A, in our calculation the mean-field
Hamiltonian is of a special form defined by the sp energies
€;=i+1/i. For this Hamiltonian, it is easy to see that in the
dilute regime, the majority of many-body eigenvalues ap-
proach a perturbed picket-fence spectrum. Away from the
dilute limit, the spectrum is not picket-fence and deviates
from Poisson as can be seen from Figs. 3 and 4. However, if
we had used sp energies drawn from the center of a GOE or
from the eigenvalues of an irregular system, the fluctuations
will be generically Poisson [51]. Therefore we call the tran-
sition seen in Figs. 3 and 4, Poisson to GOE transition and it
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FIG. 3. NNSD for a 20 member EGOE(1+2)-s ensemble with Q=m=8 and spins §=0, 1 and 2, respectively. Calculated NNSD are
compared to the Poisson and Wigner (GOE) forms. Values of the interaction strength \ and the transition parameter A are given in the figure.
The chaos marker A, corresponds to A=0.3. Bin size for the histograms is 0.2. As discussed in the text, for very small values of \, the
NNSD, for the sp spectrum employed in the calculations, is not strictly a Poisson. Therefore, the A values are not given for A=0.01 for spins
S$=0 and 1 and for A=0.02 for spin S=2.

should be kept in mind that, the sp spectrum we have chosen As we increase N, NNSD changes rapidly from a form
gives level fluctuations that are close to Poisson but not  close to Poisson to a form close to that of GOE (Wigner
strictly Poisson for A=0. For further discussion we focus on distribution) as seen from Fig. 3. However, the complete
the NNSD and its variance o*(0). convergence to GOE form is very slow. Therefore, although
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FIG. 4. A_3(L) vs L for a 20 member EGOE(1 +2)-s ensemble with d=m=8 and spins S=0 and 1. Calculated results are compared with

the Poisson and GOE forms.

the transition to GOE in level fluctuations is not a phase
transition, we can still define a transition point A=\, where
Poisson-like fluctuations start changing to GOE character
and we need a criterion to determine \.. For this purpose we
employ ¢2(0) given by a simple 2 X 2 random matrix model
for Poisson to GOE transition [53] as used in some of the
earlier studies [46]. In this model, in terms of a transition
parameter A (A is mean squared admixing GOE matrix ele-
ment divided by the square of the mean spacing D, of the
Poisson  spectrum), o'f,_,GOE(O:A)=(8A+2)/[7T(\I’(—0.5,
0,2A))]>—1. Here V¥ is the Kummer function. It can be ar-
gued that the transition to GOE is nearly complete for A
~0.3 which corresponds to NNSD variance ¢2(0)=0.37. A
plot of 0% . ;op(0:A) vs A [53] shows that the variance de-
creases fast from Poisson value 0?(0)=1 up to A ~0.37 and
then converges slowly to the GOE value ¢2(0)=0.27. For the
NNSD that are constructed for various EGOE(1+2)-s ex-
amples, the calculated o2(0) are used to deduce, from the 2
X 2 matrix formula, the values of A. In Fig. 3, the values of
the A parameter are given for different \ values and it is seen
that the transition point A is 0.028, 0.030, and 0.047 for §
=0, 1, and 2, respectively. In Fig. 4, we show A;(L) vs L for
some values of A and clearly there is a transition to GOE
statistics. It should be stressed that one expects the \. needed
to approach GOE statistics for A;(L) to scale as L'? [54]
although the scaling of N\, with other parameters (m,S,{})
will be same for any given L. In the present example, up to
L=20, the A\, deduced from NNSD could be considered as
the transition point for A;(L). However the L dependence of
\. is not probed further in the present paper.

For a qualitative understanding of the variation of \. with
spin S, it is plausible to use the same arguments used for
spinless fermion systems and they are based on perturbation
theory [15]. As \ is increased from zero, the m particle states

generated by /(1) will be mixed by V(2) and in lowest-order
perturbation the first stage of mixing will be between states
that are directly coupled by the two-body interaction. Pois-
son to GOE transition occurs when \ is of the order of the
spacing A, between the m particle states that are directly
coupled by the two-body interaction. Given the two-particle
spectrum span to be B, and the number of fixed-(m, S) states
directly coupled by the two-body interaction to be
K(Q,m,S), we have A (Q,m,S)xB,/K({,m,S) and there-
fore, A, B,/ K({Q),m,S). Using the h(1) spectrum, it is easy
to see that B, (). Following the arguments in [30] (see also
[25]), the spectral variances generated by V(2) can be written
as a7y, (m,8$)=NK(Q,m,S) and applying Eq. (13) gives
K(Q,m,S)=P(Q,m,S). With this, we have

A (S) = (17)

P(Q,m,S)’
From the results in Fig. 2, it is clear that . should increase
with spin S. For Q=m=8, Eq. (17) and the formula for
P(Q,m,S) gives P(8,8,5=1)/P(8,8,5=0)=0.834 and
P(8,8,5=2)/P(8,8,5=0)=0.55. These and the result
A.(§=0)=0.028 from Fig. 3 will give \.(S=1)=0.034 and
\.(§=2)=0.05. These predictions are close to the numerical
results shown in Fig. 3. Therefore Eq. (17) gives a good
qualitative understanding of the \ (S) variation with S. In the
dilute limit (sometimes also called asymptotic limit), as de-
fined just after Eq. (12), it is easily seen that P(Q,m,S)
—m?Q? and hence \,— 1/m?Q). Thus we recover the result
known [15] for spinless fermion systems as a limiting case.

V. BREIT-WIGNER TO GAUSSIAN TRANSITION IN
STRENGTH FUNCTIONS

Wavefunction structure is understood usually in terms of
strength  functions [F,(E)] and information entropy
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FIG. 5. (Color online) Strength functions as a function of \ for a 20 member EGOE(1+2)-s ensemble. Calculations (histograms) are for
a )=m=8 system with spins §=0, 1 and 2. Note that the widths O'Fk(m,S) of the strength functions are different from the spectral widths
o(m,S). Continuous curves in the figures correspond to the s-distribution given by Eq. (21). See text for details.

[S™/°(E)]. Both of these are basis dependent. In our (also by
all others [26-28,30,31]) construction of the H matrices, the
basis states chosen are eigenstates of both ﬁ(l) and $? opera-
tors (we drop M¢" everywhere although all the states have
M S:Mg"”). Given the mean-field A(1) basis states (denoted
by |k)) expanded in the H eigenvalue (E) basis,

k,S,Mgy= >, CE3
E

E,S,My), (18)

the strength functions Fg(E,S) and information entropy
Sinfo(E,S) are defined by

Fis(E,S) = X, |CESPOE - E') =|CESPd(m, $)p™S(E),
E!

1
~d(m,S)p"™S(E)

X2 2 |CESPIn|CESPS(E-EY), (19)
E K

S[nf()(E’ S) -

E.S|2

where |C5 9|2

denotes the average of |C;5|* over the eigen-

states with the same energy E. The strength functions give
the spreading of the basis states over the eigenstates. For
A=0, the strength functions will be S-functions at the A(1)
eigenvalues. As N\ increases from zero, the strength functions
first change from J-function form to BW form at A=\
where A\ is very small; see Eq. (22) ahead. The BW form,
with I" denoting the spreading width, is defined by

1 r

FrawE) =22 (E- &) +T%4 (20
The energies &={¢|H|¢;) are the diagonal matrix elements
of H and they are the basis-state energies. Information en-
tropy S™/° is a measure of complexity or chaos in wavefunc-
tions and the GOE value for exp[S™/°(E,S)] is 0.48d(m,S)
independent of E. Our purpose is to investigate the change in
Fis(E,S) and S™/°(E,S) as we change \. In the present sec-
tion we consider strength functions and in the next Sec. in-
formation entropy.

Figure 5 shows strength functions as a function of A for 8
particles in 8 sp levels ((Q=m=28) with spins §=0, 1, and 2.
The centroids (€) of the & spectra are same as that of the
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eigenvalue (E) spectra but their widths are different. In the
calculations, E and &, are zero centered for each member and
scaled by the width of the eigenvalue spectrum. The new

energies are called E and Ek, respectively. For each member
|C,€‘SS|2 are summed over the basis states in the energy win-

dow E, + A, and then the ensemble averaged F,(E,S) vs E
are constructed as histograms. We have chosen A;=0.025 for

A<0.1 and beyond this A;=0.1. In the plots [F,(E,S)dE
=1. Clearly, strength functions exhibit transition from BW to
Gaussian form. To describe this transition, a simple linear
interpolation of BW and Gaussian forms, with three param-
eters, as employed in [55] could be used. However, an alter-
native form is given by the one-parameter ¢-distribution well
known in statistics and it is used in [22]. In the following we
employ the #-distribution.

Student’s 7-distribution, with a shape parameter «, such
that @=1 gives BW and a— gives Gaussian, is a good
interpolating function for BW to Gaussian transition and it is
given by

(aB)*"I'(a) dE

F"(E,S)dE = ~—= )
g Val(a-1/2) [(E-Ep* + aB]”

1)

The parameter B defines the energy spread and hence, it is
determined by the variance of the strength function o'%k, i.e.,
B= o‘%k(Za—3)/a for @>1.5. For a=1.5, the spreading
width determines the parameter 8. Numerical results for the
strength functions are compared with the best fit F{"(E,S)
and they are shown as continuous curves in Fig. 5 along with
the values of the parameter a. Although only the results for

§=0,1,2 and l:fk:O are shown in the figures, we have also

performed calculations for S=0 with Ek:iO.S. As seen
from the figures, the fits are excellent over a wide range of A
values. The parameter « rises slowly up to A, then it in-
creases sharply (for a>16 the curves are indistinguishable
from Gaussian). Following [22], the criterion a~4 defines
the transition point Ap. From the results in Fig. 5 it is seen
that the transition point Ay is 0.15 and 0.16 for §=0 and 1,
respectively. In addition, N\ ;=0.19 for S=2 (for A=0.075 and
0.15, a=1.69 and 2.73, respectively). Similarly for S=0 and
Ek= *0.5, the Ay value is 0.16. Thus Ay increases slowly
with E,.

For a qualitative understanding of the variation of A\ with
spin S, we consider the spreading width I'(S) and the inverse
participation ratio (IPR) £(S). First, Fermi golden rule gives
['(S)=2m\%/D(S) with D(S)=A_(Q,m,S) as established in
[16].  Therefore, wusing Eq. (17) gives TI'(S)
< 2mN2P(Q,m,S)/Q. Similarly, (S)~T(S)/A,,(S) with
A,,(S) being the average spacing of the m particle fixed-S
spectrum. The total spectrum span considering only A(1) is
B,,cm{) and therefore A,,(S)cmQ/d(m,S). In the BW do-
main, I'(S) and £(S) should be such that (i) I'(S) <f,B,, and
(i) ¢(S)>1 where f,<l. Condition (i) gives, \?
<CymQ?/P(Q,m,S) and condition (i) gives, A2
> BymQO?*/ P(Q,m,S)d(m,S). Note that the constants C, and
By are positive. Therefore,
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Bomﬂz Comﬂz
\ T <A<\ V(=
P(Q,m,S)d(m,S) P(Q,m,S)
mQ?

P(Q,m,S)
(22)

= Np(S) =

This equation shows that just as A., the marker A\ is essen-
tially determined by the variance propagator P({},m,S).
Also as \ increases from zero, the BW form sets in fast as
d(m,S) is usually very large. From the results in Fig. 2, it is
clear that Ay should increase with S. This prediction is close
to the numerical results shown in Fig. 5. Equation (22) with
the result Ap(S=0)=0.15 gives Ap(S=1)=0.16 and (S
=2)=0.2. Therefore Eq. (22) gives a good qualitative under-
standing of Nx(S) variation with S just as for N.(S). In the
dilute limit with P(Q,m,S)—m?Q2, we have A\— 1/\m
and thus reducing to the result known [18] for spinless fer-
mion systems.

VI. INFORMATION ENTROPY AND DUALITY MARKER

Figure 6 shows information entropy S™/°(E,S) as a func-
tion of E for a 20 member EGOE(1+2)-s ensemble with
spins S=0 and 1 and for different A values. These results are
compared with the EGOE(1+2) formula for S™/° given in
[17] (strictly valid only for A >\j) by replacing the fixed-m
variances by fixed-(m,S) variances,

) o EGOE(1+2)-s §2
exp(S™°(E,S) - Sy —  \1-&exp By

272
Xexp(— §TE) (23a)

Ty (m,S)
O'%L(])(m,S) + 0'%,(2)(”1,5) ’
(23b)

it (m,S)
2 _ 1 _ off-diagonal\""*» .
¢=1 a*(m,S)

Note that E is defined just before Eq. (3) and & is a correla-
tion coefficient. The results given by Eq. (23a) are compared
with the numerical results in Fig. 6. It is seen that the nu-
merical results for A=\ are described well by the EGOE
formula. There are deviations at the tails because the result
given by Eq. (23a) assumes Gaussian form for the strength
functions while in practice there will be corrections to the
Gaussian form. Thus results of EGOE(1+2) extend to
EGOE(1+2)-s with parameters calculated in (m,S) spaces.
Similar analysis was done for number of principal compo-
nents or IPR in [26].

For the EGOE(1+2)-s Hamiltonian, two asymptotic natu-
ral basis emerge and they are (i) the noninteracting basis
defined by Ay=\;=0 and (ii) the infinite interaction strength
basis defined by N\y=A;=2%. In principle two more basis de-
fined by N\yg=0, A\;=% and N\y=%, \;=0 are possible but
they are not considered in the present Section. Therefore just
as in the previous discussion we put Ag=A;=\. An important
question is: is there a point A=\;= A, where quantities de-

036212-10



TRANSITIONS IN EIGENVALUE AND WAVEFUNCTION...

EGOE(1+2)-s: Q=m=8
1.0 S=0_ ‘S=‘1
08 | *EGOE(1+2)-s

GOE

eXp[sinfO(E,S)—Sinfo ]

02 A=0.24 A=0.24
. =043 o E=045 *
0.0 L I L L L L L L L
3-2-101 2 —2-101 2 3

[E-E (m,S))/c(m,S)

FIG. 6. exp[S™°(E,S)- ggﬁ] for a 20 member EGOE(1 +2)-s
ensemble with ()=m=8 and spins =0 and 1 for different N values.
Values averaged over bin size 0.2 are shown as filled circles. The
continuous curves correspond to Eq. (23a). See text for details.

fining wavefunction properties like entropy, strength func-
tions, temperature etc. are basis independent [18,22]. To ex-
amine this question, we compare S™/°(E,S) in A=0 and
A= basis by varying \. In the N=0 basis, S"/°(E,S) is
determined by Eq. (23a) with the correlation coefficient &
—§0 defined in Eq. (23b). Slmllarly, in the A= basis, Eq.
(23a)  applies  with &=£= a'%,(z)(m S)/[o’2h(1)(m S)
+ol Vo) (m, S)]; note that a%,(z (m,S) depends on \?. Therefore
we can determine A, by using the condition that §0 & (this
is equivalent to the condition that the spreadings produced by
h(1) and V(2) are equal). Then we have §2=§(2)=§i=0.5 at
A=\ ; see [22] for more details. Further, it can be argued that
the duality region (defined by N\~\,) corresponds to the
thermodynamic region for finite quantum systems and this
will be discussed in Sec. VIL.

Figure 7 shows numerical results for the information en-
tropy in the 4(1) and V(2) basis for a 20 member EGOE(1
+2)-s ensemble with Q=m=8 and spins S=0 and 1 for dif-
ferent \ values ranging from A=0.18 to 0.3. It is seen from
Fig. 7 that the duality marker A;,=0.21 for spin S=0 and 0.22
for S=1. For \ values below and above A, clearly there are
differences in S™/°(E,S) in the two basis. The S™/°(E,S) val-
ues in the h(1) basis are smaller compared to those in the
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FIG. 7. exp[S™/(E,S) S’”fE] in A(1) and V(2) basis for a 20
member EGOE(1 +2)-s ensemble with Q=m=8 and spins S=0 and
1 for different N\ values. Results averaged over bin size 0.2 are
shown as circles; filled circles correspond to /(1) basis and open
circles correspond to V(2) basis. The & values defined by Eq. (23b)
are also given in the figure. The duality point A, corresponds to
£=0.5. See text for details.

V(2) basis for A<\, The two entropies coincide at A=\,
and beyond that, S"/° in the h(1) basis is comparatively
larger. For a qualitative understanding of the variation of A,
with S, we use the criterion that around the duality region,
spreadings produced by h(1) and V(2) are equal. This leads
to the condition,

o) (m.S) = NgP(Q,m,S). (24)
To determine 0%(1)(m,S), we consider a uniform spectrum

with A=1. This gives, 0j,(1,3)=(Q>~1)/12. Then, using
Eq' (7)7

1
i) (m.S) = H(Qm.8) = —[m(Q+2)(Q = m2)
—205(S+ 1)]. (25)

Combining this with Egs. (13) and (24) will give finally
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IVOERY G mS) 26
a(S) POmS) (26)
Equation (26) with the result A, (S=0)=0.21 gives \,(S=1)
=0.22 and A\ ,(§=2)=0.24. These predictions are close to the
numerical results shown in Fig. 7. Therefore Eq. (26) gives a
good qualitative understanding of \,4(S) variation with S. In
the dilute limit, simplifying the H and P factors, we have
Ny— 1/\m and this is the result for spinless fermion systems
[22]. This also shows that in the dilute limit A; and N have
same scale. However these scales differ parametrically as m
approaches ) (for m>() one has to consider holes) and S
=m/4. In this situation there is strong spin dependence for
the ratio N,/ \r as seen from Egs. (22), (25), and (26) that
give Ny/\px \/ [;n(mz)(ﬂ—::gz) 22056401 Thys the variance
propagator determines the behavior of the three transition
markers N\, Ag, and A,.

VII. OCCUPANCIES, SINGLE-PARTICLE ENTROPY AND
THERMODYNAMIC REGION

A very important question for isolated finite interacting
particle systems is the following: in the chaotic domain will
there be a point or a region where thermalization occurs; i.e.,
will there be a region where different definitions of entropy,
temperature, specific heat, and other thermodynamic vari-
ables give the same results (as valid for infinite particle sys-
tems) [12,14,40]? Toward answering this question within
EGOE(1+2)-s, we consider three different entropies, i.e.,
thermodynamic entropy defined by the eigenvalue density,
information entropy and sp entropy defined by the occupan-
cies of the sp orbitals. Before comparing these three different
entropies for various values of N, now let us first consider
occupancies in some detail.

Occupation probability for a sp orbital i is given by the
expectation value of n;, i.e., {(n;)"5E. It is possible to write
this as a ratio of two densities,

_<m&H—E»mS_<>m¢ﬁﬂE)
T (e —EyS T ey

As n; is a positive-definite operator, the occupancy density
p"S(E) can be represented by a probability density with mo-
ments M H(n)=(nHP)"3[{n;)™5. The corresponding lower
order central moments define Edgeworth corrected Gaussian
form for pnm_’S(E). For N>\, fluctuations follow GOE and
hence (n,-)’”’S’E take a smoothed form and they can be written
as the ratio of the smoothed forms for the densities in Eq.
(27). As the fixed-(m,S) eigenvalue density is Gaussian, the
fixed-(m,S) occupancy densities also follow Gaussian form
(as discussed ahead, this is verified by calculating the excess
parameter). Therefore,

(nyy"SE (27)

A=), an.’:z(E)
(ny™SE — (ymS————r. (28)
PG~ (E)

Figure 8(a) shows occupation numbers for a 200 member
EGOE(1+2)-s ensemble with d=m=6 and spin S=0 as a
function of E for various N values. Results are shown for the
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EGOE(1+2)-s

(b) Q=m=8, S=0
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E.(m, S)]/o(m, S)

00 L 1 111
-3 2 -1 0 1 2 3

FIG. 8. (Color online) Occupation numbers as a function of
E:[E—Eg(m,S)]/a'(m,S). (a) For a 200 member EGOE(1 +2)-s en-
semble with }=m=6 and spin S=0, shown are the results for the
three lowest sp levels (solid blue, dashed red and dot-dashed green,
respectively). They are compared with the EGOE smoothed form
(black) given by Eq. (28) for A>\.=0.05. (b) For a 20 member
EGOE(1+2)-s ensemble with Q=m=8 and spin S=0, shown are
the results for the four lowest sp levels (solid blue, dotted red,
dashed green and dot-dashed orange, respectively). They are com-
pared with the EGOE smoothed form (black) given by Eq. (28) for
A=0.1. For this system, \.=0.028. Note that for the results in the
figures, occupancies are averaged over bin size 0.1 for Q=m=6 and
0.05 for Q=m=38, respectively. See text for further details.

lowest three sp orbitals. As discussed in Appendix B (see
also Fig. 11 ahead), A,=0.05 and \;=0.18 for the present
example. It is clearly seen from Fig. 8(a) that the fluctuations
are large for A<\, as expected. Beyond this, the occupan-
cies start taking a smoothed form. The numerical results for
N>\, are compared with the smoothed form given by Eq.
(28). Here Edgeworth corrections are added to the Gaussian
densities. For example, for A=0.1, the difference between the
occupancy density centroids and the energy centroids (in
units of the spectral widths) are —0.4, —0.29, and —0.12 for
the sp orbitals 1, 2, and 3, respectively. Similarly the occu-
pancy density widths (in units of the spectral widths) are
0.91, 0.96 and 0.99 and 7, values are —0.39, —0.43 and -0.4
for the sp orbitals 1, 2, and 3, respectively. Note that |y,
~0 in all the cases. For the eigenvalue density, the excess
parameter y,(m,S)=-0.38. Agreement between Eq. (28) and
the numerical results is excellent except at the spectrum ends
as here the states are not sufficiently complex. We have also
verified this for S=1 and S=2 examples. Therefore in the
N <\, region, fluctuations being large (they follow Poisson),
smoothed forms are not meaningful. On the other hand, in
the chaotic domain defined by N>\, occupation probabili-
ties take a smoothed form as the fluctuations here follow
GOE (hence they are small). The smoothed form is well
described by Eq. (28). It is interesting to note that the fluc-
tuations even in the ground-state region are small for A
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FIG. 9. Thermodynamic entropy exp[S™*(E,S)-S""], infor-
mation entropy exp[S™/°(E ,S)—Sg’é‘;z] and single-particle entropy
exp[S*P(E,S)-SP 1 vs E:[E—Ec(m,S)]/a(m,S) for a 20 member
EGOE(1+2)-s ensemble with Q=m=8 and S=0 for different \
values. Entropies averaged over bin size 0.2 are shown as filled
circles. Note that for A=0.01, exp[S™/*(E, S) - S22 ] is close to zero

for all £ values. See text for details.

> N\p. All these conclusions are also verified for a 20 member
EGOE(1+2)-s ensemble with Q2=m=8 and S=0 and some
of these results are shown in Fig. 8(b).

Given the fractional occupation probabilities fi(E,S)
=2(ny"E, the sp entropy S*(E,S) is defined by

S¥(E,S) = — 2 2{f(E,S)In f,(E,S)
+[1=f(E,S$)|In[1 - f(E,S)]}. (29)

To establish that the A=\, region corresponds to the thermo-
dynamic region, we will compare the thermodynamic en-
tropy S"¢"(E)=In p"™S(E) and the information entropy de-
fined by Egs. (19) and (23a) with the sp entropy for different
\ values just as it was done before for EGOE(1+2) and the
nuclear shell-model examples [19,20]. For Q=m=8 and S
=0 system with 20 members, we show in Fig. 9 results for
A=A;=0.21, A=0.01<A; and A=2>\, Note that
exp[ S (E,S) - S™""] — exp— S E? for all \ values as the ei-
genvalue density is a Gaussian essentially independent of \.
Similarly, Eq. (23a) gives the formula for exp[S™/°(E,S)
—5#9]. We have also verified that the extension of the
EGOE(1+2) formula for the sp entropy [20] with centroids
and variances replaced by fixed-(m,S) centroids and vari-
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Transition markers A, A, and A, for EGOE(1+2)-s
H,=h(1) + A [V™'(2) + V*'(2)]

parameters: (Q, m, S, 1)

Eigenvalue ‘ Gaussian
density
Poisson GOE
Fluctuations | i
I D M .
0! W W : :
A Ae Ap Ay
e 18] BW I Gaussian
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‘ BW domain ‘ Gaussian domain
Information

entropy, single

<
particle entropy defined by & parameter

QZ:O.S@ duality or
thermodynamic region

FIG. 10. Transition (chaos) markers for EGOE(1+2)-s. Results
in the figure are obtained using the Hamiltonian H, given in Eq.
(16), i.e., A\g=A;=\ in Eq. (1). Note that \ is in the units of the
average spacing A of the sp levels defining 4(1). As discussed in the
text, strength functions take S-function form (denoted by & in the
figure) for A<\ 5 with A s<<\, and they start taking BW form as \
crosses Ag. The BW domain is defined by N\, <<\ <\ and here the
strength functions take BW form and the fluctuations are GOE.
Similarly, in the Gaussian domain, defined by A > A, the strength
functions take Gaussian form and the fluctuations are GOE. Also in
this region, the information entropy and single-particle entropy are
defined by the & parameter given in Eq. (23b). The basic structure
of the transitions remains same even for )\(2);&)\% as discussed in
Appendix B. See text for further details.

ances is a good approximation for fixed-(E,S) sp entropy
and then the formula is

exp[S*(E,S) — S

o J=exp— éngfz. (30)
For the three examples shown in Fig. 9, §2=O.998, 0.5, and
0.039 for A=0.01, 0.21, and 2, respectively. It is clearly seen
from Fig. 9 that the three entropies differ as we go away
from A=\, and at A=\, they all look similar, i.e., as stated in
[19] “the thermodynamic entropy defined via the global level
density or in terms of occupation numbers behaves similar to
the information entropy.” Therefore, A=\, region can be in-
terpreted as the thermodynamic region in the sense that all
different definitions of entropy coincide in this region.

VIII. CONCLUSIONS

In summary, we have presented in Secs. III-VII, a com-
prehensive set of calculations for the changes in level fluc-
tuations, strength functions, information entropy and occu-
pancies as a function of the N\ parameter in EGOE(1 +2)-s
Hamiltonian given by Eq. (1) with N\g=A;=\. The final re-
sults are summarized in Fig. 10 (the basic structure of the
transitions remains same even for Aj#\] as discussed
briefly in Appendix B). In addition, we have derived the
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exact formula for the ensemble averaged fixed-(m,S) spec-
tral variances and for the V(2) part it is of the form
N2P(Q,m,S). We have demonstrated that the variance propa-
gator P(Q),m,S) in Eq. (13) gives a good explanation for the
spin dependence of the Poisson to GOE and BW to Gaussian
crossover points A. and A for level fluctuations and strength
functions, respectively, and similarly for the duality or ther-
modynamic region marked by N\, (obtained from information
entropy and occupancies). The three chaos markers N\, \p
and A, in terms of P(Q),m,S) are given by Egs. (17), (22),
and (26), respectively. As seen from Fig. 2, P decreases with
S and using this in Egs. (17), (22), and (26), establishes that
the N, A\ and A, values will increase with S (as S=m/2
corresponds to spinless fermions, it may be possible to in-
vestigate further, using EGOE(1 +2)-s, the recent claim by
Papenbrock and Weidenmiiller [56] that symmetries are re-
sponsible for chaos in nuclear shell model). Thus, introduc-
tion of the spin quantum number preserves the general struc-
tures, generated by spinless fermion EGOE(1+2) ensemble,
although the actual values of the markers vary with the
m-particle spin S. It will be interesting and useful to examine
in future the energy dependence of the markers \., Ay, and
A4 It should be emphasized that the first example for the
transition markers exhibited by EGOE(1+2) with additional
good quantum number besides the particle number m are
derived and presented using EGOE(1+2)-s in this paper.

The transition markers as described in Fig. 10 provide a
basis for statistical spectroscopy. For example, for A=\, as
GOE fluctuations are small they can be ignored. Then the
smoothed eigenvalue densities will be Gaussian. Similarly
the strength functions and other related distributions will
take BW or Gaussian form. Using these it is possible to
derive distributions (with respect to the energy eigenvalues)
for various spectroscopic observables [4,12,21,29,34,35] and
employ them in applications in nuclear and atomic physics.
Moreover if the system is in the thermodynamic region, then
Gaussian form can be used for the strength functions (or
partial densities) defined over subspaces generated by any
symmetry algebra [21,29] and this will allow one to study
goodness of group symmetries [47,57]. In a future publica-
tion, going beyond strength functions and occupancies, we
will consider the distribution of transition strengths gener-
ated by a general one-body transition operator that is a vector
in the spin space. Transition strengths are observables and
they are also useful in many applications [8,35,58,59].

In the present paper, we have presented a detailed analysis
of the transition markers using level fluctuation measures
nearest-neighbor spacing distribution and Aj statistic, and
occupancies which are often used in spectroscopy. In addi-
tion, employed also are the strength functions and informa-
tion entropy which are used often in quantum chaos studies
as delocalization measures. In addition to these traditional
measures, it is also possible to employ the new entanglement
measures, introduced in the context of QIS, to characterize
complexity in quantum many-body systems and for disor-
dered spin-1/2 lattice systems; entanglement and delocaliza-
tion are found to be strongly correlated [23,60]. As empha-
sized in [23], this feature may be generic to systems
described by two-body ensembles and hence should be in-
vestigated in detail. Similarly, in [60] the authors define two-
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FIG. 11. (Color online) Variation in the nearest-neighbor spac-
ing distributions P(S) and the strength functions Fi(E,S) with X\,
and \,, for a 200 member EGOE(1+2)-s ensemble with Q=m=6
and spin $=0. Calculations are carried out with the constraint
()\%+3)\%)/4=)\2 and the results are shown for (a) A=0.05 and (b)
A=0.18 with three different values for \,. Strength functions are
shown for Ek=0. Histograms, with bin size 0.2, are the calculated
results. See text for details.

body ensembles for distinguishable quantum particles (spins)
and study in particular the distribution of entanglement and
quantum correlation measures. Besides the entanglement
measures, further analysis of the thermodynamic region gen-
erated by two-body ensembles (defined by N\, in Fig. 10)
using long-time averages of various complexity measures as
discussed in [40,41] is needed. This, besides being important
in QIS, should lead to deeper understanding of wavefunction
thermalization in generic isolated many-body quantum sys-
tems [40,41,61,62]. These two issues (entanglement and ther-
malization within EGOE) will be addressed in detail in a
future publication.
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APPENDIX A

Toward providing a basis for the Gaussian form for the
eigenvalue density generated by EGOE(1+2)-s, we derive
first the exact formula for y,(m,S) for a general (1) opera-
tor and then consider the ensemble averaged y,(m,S) for
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EGOE(2)-s. Given h(1)=2;en;, the y,(m,S) is defined by
the fourth central moment (4*(1)Y™S and the variance or the
second central moment (#(1))™S. Note that

[0} 1 Q
h(1)= 2 &n;; E,:e,»—ﬁE € (A1)
i=1 i=1

To derive the formula for the fourth moment, we will decom-
pose first h2(1) into one and two-body parts. The one-body
part of h%(1) is defined by the sp energies € and the two-

1

body matrix elements V};;=2€&g; with all other matrix ele-

ments being zero; note that i # j for s=1. Then the \’s and
other averages in Eqgs. (9)—(11) are

_ - 2 =
NO=— £\ =28 - =X,
ii ii i Q\
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s 2=
(V= g,
VP = —— X4 (= 1)'Y]
Q0+ 1] ’
<[Vszv=2(2)]2>2,s _ 4(= l)x

“lrCnler2cn]
402 +3(-1)’Q +3) _
o0+ P21

Using Eq. (8) of [26] with Egs. (12) and (A2) given above,
the final propagation formulas are

(A2)

[m(m —2Q)(Q +2) + 4QS8(S + 1)]2X
40%(0*-1)? ’

[-m(m=-2Q){-4(Q+1)+m(Q+4)} +4Q2Q -3m +2)S(S+ 1)]

()T =
- - 12H(Q,m,S
RS =[RS - mo{ _an+

1

X(X-QY)+ 20202 - 1)(Q-2)%(Q +2)

+m?(3Q+8) —m(3O7+ 16Q + 12)} + 16Q4S(S + DP*](X - QY) +

4
s=0:v=2 2\2,0
(0% 21 F 0 )03

Note that H is defined in Eq. (25) and Q’s are defined in Eq.
(12), respectively. Using Eq. (A3), we can calculate y,(m,S)
for any set of €’s and (), m,S) where,

_ Gy
(GO

Expanding the expression, by combining Egs. (A3) and (A4),
for y,(m,S) in powers of 1/} and retaining terms upto 1/},
we have

y(1,3)  {m(m—4)+455+ DH{5n(1,3) +6}
Y2(m,S) = - 2
m 2m-()

o)

Therefore, for the h(1) operators with |y,(1)|~ 1, the excess
parameter y,(m,S) —0 for sufficiently large m and also the
spin dependence is weak. Therefore i(1) operators in general

(A5)

Q*(12hm, (V=2 QPP

QXA+ DH(Q-1)(Q=-2)

[m(m-2Q){-4(Q+ 1) +m(Q +4)}* +8QS(S+ D{2(Q+ 1)(3Q +2)

4
QOQ-1)(Q+ 3)Q2({2}:’”’S)

(A3)

generate Gaussian eigenvalue densities for large m values.
With S=m/2 and N=2Q), Eq. (A5) reduces to

(1,%) N l[{ﬁ’z(l’%) +6}

Y2
’S =
¥2(m,S) m N "

fol2)-o]

This is same as the result that follows from the exact formula
for ,(N,m) for spinless fermion systems [36].

Turning to two-body interactions, first it should be men-
tioned that a formalism for obtaining exact results for
v,(m,S) for a given V(2) is given in [63,64] and also they
can be obtained via a subtraction procedure using the formu-
lation discussed in [57]. As seen from [63], the analytical
result for y,(m,S) is complicated and contains too many
terms. Therefore it is not easy to derive an analytical formula
for y,(m,S) for EGOE(2)-s. However, an analytical under-
standing is possible in the dilute limit. Then, as argued in

(A6)
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[65], the spin dependence of y,(m,S) will be weak and the
first correction is of the form Cy[1+4S(S+1)/m?] where C,
is a constant. Strikingly, Eq. (A5), for the i(1) operator, also
gives the same result. Then one can conclude that
EGOE(2)-s gives Gaussian eigenvalue densities. In addition,
numerical calculations for y,(m,S) for EGOE(2)-s, employ-
ing the formula derived in [25,66] using the so-called binary
correlation approximation, clearly showed [25] that
|y,(m,S)| will be very small. Combining the analytical re-
sults given by Egs. (A3) and (A5) for vy,(m,S) for the A(1)
operator and the analytical plus numerical results for
EGOE(2)-s, it is plausible to argue that the eigenvalue den-
sity for EGOE(1+2)-s will be in general of Gaussian form.

APPENDIX B

All the discussion in Secs. IV-VII is restricted to Ng=X\;
=\ in Eq. (1), i.e., for equal strengths of the s=0 and s=1
parts of the interaction. However, for completeness, here we
present some results for the change in the eigenvalue and
wavefunction structure for Aj# \]. To investigate this, we
have examined NNSD and strength functions by fixing the
value for the ensemble averaged two-particle spectral vari-
ance 07y,)(2) generated by the two-body part of H and then
varying \o (\;). The two-particle spectral variance for ()
>1is a'%,(z)(Z) =(\J+3\%)/16. Therefore we have considered
the following Hamiltonian:

Hon o = (1) + X0V =0(2) + M V=1(2); - (\G+3MD/A4 =2,
(B1)

and carried out calculations for various fixed values of \ and
varying Ny (\;) with the constraint ()\S+3)\%)/4=)\2. For a
200 member EGOE(1+2)-s ensemble defined by H » .\

PHYSICAL REVIEW E 81, 036212 (2010)

with Q=m=6 and §=0, results are presented in Fig. 11 for
NNSD and strength functions. In the calculations, we have
chosen A=0.05 for NNSD and A=0.18 for the strength func-
tions. For the choice Ay=\;=A\, they correspond to A\, and
\p, respectively, for the Q=m=6 and S=0 system. This is
clearly seen in Fig. 11. Results are also shown for the two
extreme choices \y=0, >\1=\5T/3x and N\y=2\, N\ =0. For
Np=0, the NNSD is closer to Poisson while for A;=0, NNSD
is much closer to the Wigner form. Similarly, for Ay=0, the
strength function is more closer to BW while for A =0, it is
closer to Gaussian. We can easily infer these changes in the
structures from the propagator ratio R ) (€2,m,S)
= (XO,)\I:)\)(m,S)/[)\zP(Q,m,S)]. Note that O%AO’)\]:)\)(m,S) is
same as oy, (m,S) given by Eq. (12). For our example with
Q=m=6 and §=0, we have R, .\)({2,m,5)=0.93,0.94, 1,
1.1, 1.22 for A=0.05 and N\y=0, 0.02, 0.05, 0.075 and 0.1,
respectively.  Therefore  for 7\y<<0.05, we have
Rogan(Q,m,S)<1 and this implies [as seen from Eq.
(17)] that the level fluctuations change from Poisson-like to
GOE as the value of A is increased from \y=0 as seen in
Fig. 11(a). Similarly, RO\O’M:A)(Q,m,S)=O.93, 0.95, 1, 1.07,
1.22 for A=0.18 and A\y=0, 0.1, 0.18, 0.25, and 0.36, respec-
tively. Therefore for A\y<<0.18, we have R(AO,)\IZ)\)(Q,m,S)
<1 and this implies [as seen from Eq. (22)] that the strength
functions change from BW to Gaussian form as the value of
\o is increased from A\y=0 as seen in Fig. 11(b). Thus we can
conclude that the general structure of the transitions, as dis-
cussed in Fig. 10, remains same even for )\(Zﬁﬁ )\%. We have
also made calculations by varying Ay and \; without any
constraint. Here also the variance propagator gives predic-
tions for the changes in NNSD and strength functions and we
have verified these predictions in some examples.
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